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Designing a knowledge representation for an intelligent tutor depends in part, on the

target behavior anticipated from the student and we distinguish between competence

in qualitative physics and competence in quantitative. We illustrate this competence

through questions we expect a student to be able to answer for two example

problems, a crane boom and a stone throw problem and describe approaches

consistent with each type of competence. For example, the approach that leads to

competence in qualitative reasoning emphasizes pedagogic and conceptual knowledge

and the approach that leads to competence in quantative reasoning, is an expert

system which emphasizes problem solving and factual knowledge. In establishing a

vocabulary for discussing knowledge representation issues, we suggest two (orthogonal)

ways to categorize the knowledge of a physics tutor. The first consists of facts,

skills, and concepts and the second distinguishes between expert and pedagogic

knowledge.
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KNOWLEDGE REPRESENTATION IN A PHYSICS TUTOR

Tom Murray
Beverly Woolf

Department of Computer and Information Science
University of Massachusetts

Amherst, Massachusetts, 01003
1 July 1906

We are on the verge of developing substantially more powerful intelligent tutoring
systems that can reason about a student's knowledge and asstom-tailor their teaching
strategy to his individual learning pattern. Such systems will be able to simulate "worlds*
(e.g., the ocean,* atmosphere, power plants, ecosystems, etc.) in a vinosity rich and
informationally dense way that is not currently pomible.

Obviously, we are not yet capable of building such systems; formidable barriers, both
hardware and software, stand betsfeen us and full realization of the potential. However,
many of these barriers are theoretical, rather than engineering; IA., they depend on
providing new abilities or new results to the computer. In this article we discs= one of
the most salient of these barriers, representing the knowledge for a computer tutor. By this
we mean teasing apart, and codifying, knowledge of the domain, discourse, tutoring, and of
the student for use inside the computer.

The very fact that knowledge representation remains a barrier to successful
development of intelligent tutors underscores the important difference between intelligent
teaching systems and computer-aided instruction, CAL Since intelligait tutoring systems
reason about the student and the domain, they require encoded knowledge of the student,
tutoring, and of discourse conventions to make reasonable decisions about their responses to
the student.

The purpose of this article is to establish a vocabulary a common pound for
the various participants in the development phase of a computer tutor. These participants
include, but are not limited to, teachers, computer scientists, psychologists, and domain
specialists. Each will need to work with the others to build intelligent tutoring systems:
teachers will have to become familiar with the knowledge engineering elements of a system
and the computer scientists with the the educator's expertise in academic domains, in
pedagogy, and in curriculum design. In developing tbity common ground vocabulary, we are
additionally addressing all the concerns of knowledge. representadon that impact on the
development of tutoring systems.
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The Exploring Systems Earth (ESE) has already begun to train high school science

teachers in knowledge engineering issues. For collaborations such as thecae to be effective,
the parties involved mug work from a common vocabulary and structure that acts as the
basis for communication and the evolution of ideas. The Umass ITS group is working
toward such a representational scheme for intelligent tutor.

There are several criteria for developing a general knowledge represented= scheme
for tutoring. Such a represented= mug 1) be general enough to be used for tutoring many
domains and many types of knowledge (facts, skills, etc.), 2) be powerful enough to support
(or upgrade to) the sophisticated inferencing needed for expert problem solving and student
behavior diagnosis, and 3) dear, and unambiguous enough to make the task of transferring
a teacher's knowledge to the computer effident and straightforward.

This paper describes our current work on developing such a knowledge representation
(KR) scheme. The paper focuses on the domain of physics, but the intent is to design a
general KR scheme that could be used in any science or technical domain. The KR scheme
is intended to represent only domain specific knowledge (physics in this case); we do not
address general knowledge about tutoring rules or discourse conventions (see Woolf 1964 for
a discussion of these). We do, however, include what we all pedagogic components of
domain knowledge. Pedagogic knowledge is the knowledge that a tutor needs to teach
expert knowledge. Expert knowledge is knowledge needed to solve a problem in the
domain. Examples of pedagogic knowledge are a hierarchy of salient topics, pointers to
useful examples, and information *about how the domain knowledge is organized

PedaSoSKIY.

We address two issues in the design of a knowledge represented= (KR) scheme:

The KR design depends, in part, on the target behavior anticipated from the student and
we distinguish between competence in qualitative physics and competence in quantitative.
We illustrate this competence through questions we expect a student to be able to answer
for two example problems, a crane boom and a gone throw problem and describe
approaches consistent with each type of competence. For example, the approach that leads
to competence in qualitative reasoning emphasizes pedagogic and conceptual knowledge and
the approach that leads to competence in quantitative reasoning, is an expert system v)ri c.V%
emphasizes problem solving and factual knowledge.

In establishing a vocabulary for discussing KR issues, we suggest two (orthogonal) ways to
categorize the knowledge of a physics tutor. The first consists of facts, skills, and concepts
and the second distinguishes between expert and pedagogic knowledge.

2. Duet Behaviors for Quaiditative vs. °twilight Viskolimijak

The structure and content of a computer tutor, and thus its knowledge representation
(KR), strongly depends on the types of target behaviors one wishes to see in students. In
this section we look at performance on quantitative vs. qualitative physics questions that we
expect our students to have and share our speculations about what a KR would look like
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for tutors focusing on either behavior. We will be as clear us possible about the intended
use of the system.

Both quantitative and qualitative questions (and both types of reasoning) are needed
n learning physics. Qualitative questions encourage the student to think about a physics
situation in realistic, non - formula- centered ways; such questions are useful for enabling the
eudait to diagnose and construct her conceptual knowledge. Quantitative questions are
aped* useful for diagnosing and improving problem solving abilities.

Most questions in standard physics homework exercises and exams are of the
quantitathe type. Often students who appear competent on such questions have difficulties
solving non-standard problems (of both qualitative and quantitative types). These difficulties
can be manifestations of poor problem solving abilities and/or inadequate grasp of the basic
concepts.

Qualitative target behaviors include a student's ability to answer questions about:
the existence of objects, properties, and variables (a: Does a force exits here?);

the relative magnitudes of variables (ex: Which side has the larger force?);

the directions of vectors (up, down, etc;) and changes (greater or smaller);

features of items, compare and contrast;

causality, functionality and importance relationships;

hierarchical relationships such as part-whole, classification, and set membership;
We are currently more concerned with the first three of these in
teaching physics knowledge.

Quantitative target behaviors include a student's ability to:
determine numerical values for variables given a sufficient set of

facts;

demonstrate domain-specific problem solving skills, procedures, and heuristics;

We can best illustrate our notions about the two types of reasoning through aamplui
and questions used for each. We use two physical situations, throwing stone vertically
and a simple crane-boom problem (see Figures 1 & 2). Corresponding to each behavior
are specific questions that a tutor might ask to test that a student has mastered the
particular approach. Qualitative and quantitative questions for each example are listed in
Figure 3 and for the crane boom in Figure 4. Note that some of the. qualitative question
are intended to check misconceptions

One can appreciate that the structure and content of the knowledge representation
needed for each type of reasoning and teaching should be quite different. In the third
section we present our design suggestions for a qualitative and qualitative tutor and
continue to descilbe each system as a separate entity. This is for illustration purposes only

an actual physics tutor should incorporate the reasoning and representation of both kinds
of tutors. In the next section we present a taxonomy of the types of knowledge used in

5
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Figure 1 Figure 1 The Stone Throw Situation.

Figure 2: Figure 2: The Crane Boom Sltualtoe.

6



5

Qui haft Questiomi for the Stone Throw Problem

I. Will a lighter stone, given the same initial velocity, go higher?

2. What are the forces on the stone when it is half way up? At the top?

3. Does it come down faster than it goes up?

4. Is the time between the throw and the apex longer than between the apex and
the impact?

5. Why don it reverse direction at the top?

6. Can it be thrown so hard that it will not fall back?

Osumi native Questions for the Stone Throw Problem

I. Given initial velocity, what is the maximum trajectory height?

2. If the stone is released from a height of 3 meters, what is the final velocity?

3. What initial velocity must I give it so that it will be going 30 m/sec 20 meters

from the ground on the way back down?

4. If I release a second stone just as the first one passes my hand on the way
down, what will be the time lag between their impacts?

Figure 3: Questions for the Stone Throw Problem.

building a computer tutor.

3.

As already mentioned, the KR of a computer tutor will vary with the kind of
reasoning and teaching the system is expected to perform. In this section we propose an
orthogonal categorization to that of the quantitative and qualitative tutor. In this section,
we categorize domain knowledge for a computer tutor into facts, skills, and concepts on the

one hand and into expert and pedagogic knowledge on the other hand. We will also
discuss knowledge representation issues in student modeling and in the next section describe
KR for two theoretical tutors in terms of this taxonomy.

7
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Qualitative Questions for the Crane Boom Problem

1. What are the forces on the cable (nan'ies and directions)?

2. Given any cable strength and bob weight, can we always find a theta which
will break the cable? (The answer is yes, I think)

3. How does the weight of the boom effect the torque on the wall?

4. In what direction does the boom push or pull the cable?

5. What would happen if the cable and bob wire were one continuous wire
and it ran through a metal "eye" at the end of the boom that allowed it to
more freely?

6. What would happen to the tension in the cable if the boom angle were
increased?
If the boom were longer? If the bob wire were longer?

Quantitative Questions for the Crane Boom Problem

1. Given the bob weight and cable angle theta, what is the tension in the cable?

2. If the cable breaks at 5C0 lbs., what is the min. theta?

3. For a theta of 30 degrees, what is the maximum weight?

4. Given theta and the cable tension, what is the bob weight?

5. If the cable it shortened to raise the boom to a 45 degree angle, what will be
the tension on the cat le?

6. What is the force on the wall by the boom?

Figure 4: Questions for the Crane Boom Problem.

LUNN WILL and meant

The first division of domain knowledge is into facts, skills, and concepts. Facts

include declarative knowledge, including propositions, definitions, objects, properties of
objects, relationships between objects, etc. Skills include knowledge about bow to use
factual knowledge and might include procedures and heuristics. In many domains, skill
knowledge is the problem solving knowledge. Concepts include entities that act as

place -holden or denotations to complicated constructs which we believe experts have, such
as knowledge about gravity. Novices, too, bold concepts, however their concepts often
include misconceptions. Thus we use facts, skills, and concepts as a convenient way to tease
apart the knowledge of the domain. Although our taxonomy of knowledge is independent
of the way it is represented in a computer program, it is worth noting that facts are often

..4601.1.14,4.1416



7

represented using frames or semantic networks and skills as a set of production rules or as
attached procedures in frames systems.

Many KR languages (and cognitive science theories) propor e breaking knowledge into
declarative or procedural components corresponding to the fire and second category above.
In tutoring, however, we find it a...twiny to include the third =wry, concepts, because

some knowledge, due to its complexity, can not be definithely represented. Enmples
include force or conv:rvatiou of momentum (in physics), recursion or types (in
programming), and symmetry sad infinity On math). These concepts can only be described
in terms of how they relate to other piece of knowledge. For example, the declarative
knowledge of how many planes there are in our solar system can be stored explicitly in
our KR, as can procedures or heuristic rules for solving simultaneous equations, but the
concept of force can only be described by examples, by relating the concept to other
concepts, listing related facts and procedures, and/or specifying behaviors that indicate
competence with the concept.

).2 Expert knowledge and Dedangle knowledig

Implementation of a tutor requires knowledge used by an expert to solve problems in
the domain along with pedagogic knowledge about how to teach the expert knowledge.
Pedagogic knowledge includes knowledge of the importance of kerns, the salience of
features, the necessity or typicality of features, the learning difficulty of procahmes, and the
necessity or sufficiency of rule antecedents. Some pedagogic knowledge is escalated with
problem solving rules and allows an expert system to be articulate, i.e. to explain its actions
and decisions. Illustrative examples and diagnostic procedures are also part of pedagogic
knowledge.

Pedagogic knowledge may be represented separately from expert knowledge, or it can
be sprinkled amongst the expert knowledge- included in the frames and production rules of
the expert knowledge. Relating this categorization with the previous one, fact and skill
knowledge can be of either an expert or a pedagogic nature, while concepts will always be
pedagogic entities, since they are not needed by an expert system to solve a problem.

In sum, the knowledge necessary for a computer expert to solve a problem is expert
knowledge; all other knowledge (used for explanation, tutoring, student modeling, etc.) we
call pedagogic knowledge, because it is needed in order to teach or explain the expert
knowledge. Pedagogic knowledge contains more than information about "how" to teach to
domain knowledge; it contains information about bow the student learns or fails to learn
that information. Common student errors and misconceptions are often contained in the
pedagogic knowledge. Novice students will often focus on inappropriate (yet correct) features
of a situation.

For example, given a book resting on a table, a student may think that a table's
"inflexibility" property implies that it can not exert a force. Such non-relevant properties of
cbjects should be included in the tutor's KR, and flagged as non- relevant. Also included as
pedagogic knowledge would be such things such as misconceptions, curriculum sequences,
F revequisites, "generic" or evolutionary links between KR items (such as generalization,

9
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specialization, refinement, et:, which characterize the proms of learning by modifying 

existing knowledge [Goldstein 1982D, and pedagogic links between concepts or examples 

(such as extreme case, analogy, counter example, etc.) 

3.3 lLinLitiskatil2dsi 

Our discussion of student modeling addresses only the representation of student 

knowledge, and not the more difficult issues in student modeling of aedit/blame 

assignment and student pit- -.cognition. Tam seems to be two general methods of 

modeling the student in abide Ars systems. One method models the student knowledge 

in relation to the expert knowledge (we will call this "clew" modeling), and the other 

method does not use expert knowledge or represents student and expert knowledge 

independently (we will all this "autonomous" modeling). 

Basically, the autonomous modeling methods specifying all of the items that the 

student needs to learn in a check list or table form and associates a value with each of 

these items. The values can be "yes," 'no," or "unknown.* The values can also be 

numerical certainty or strength factors, indicating the tutor's certainty that the student has 

the piece of knowledge, sir alternatively, the estimated strength of the knowledge in the 

student. Some schemes have included surds of the number of times a piece of knowledge 

was needed, used successfully, used unsuccessfully, and ignored. Miwknowledge, such as 

repeated errors and misconceptions, can be similarly represented in autonomous student 

modeling. Autonomous modeling must be used in tutoring systems which are not expert 

systems, i.e. in systems whose knowledge objects merely refer to human knowledge, aid do 

not attempt to represent that knowledge computations*. 

Clone modeling is more complicated; the student model is linked directly with an 

expert knowledge represents don. In such a system the student's behavior can be compared 

with the way the expert would have solved a problem or answered a question. The 

student's knowledge is intrpreted as the union of: 1)a whoa of the open knowledge 

(an "overlay" model), and 2) a set of "buggy" items. The buggy items are perturbations 

(like mutant clones) of the expert knowledge. There are a number of simple perturbations 

types. They include (in frame terminology): adding and deleting values of features, and 

adding and deleting feature; (slots). For example, assume that the Dog frame has a slot 

named Legs which has a value of 4. Examples of errors are: "Dog have S legs" (value of 

5 in the Legs slot), "I don't know how many legs dogs have" (deleted value), "Dogs 

have 2 who" (a feature Wings is added, with its value of 2), and 'Number of legs has 

nothing to do with dopes" (a missing feature, Legs). 

Other types of deviations involve hierarchical or evolutionary relationships between 

pieces of knowledge. Examples are overgeneralizadon ("Animals have 4 legs"), and 

inappropriate refinement (distinguishing between flexible and inflexible objects when 

inappropriate) or inappropriate analogies. 

Some errors involve the interaction of normally unrelated pieces of knowledge. 

Examples are using the name of one thing to refer to another, and substituting part of 

what is known for an unknown item. Knowing that the student has confavd two things is 

, 10 
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much more useful in tutoring than just knowing that she got a question wrong or has the
wrong value for a feature.

Factual knowledge, especially if :.nplemented in frames, is quite amenable to the
deviant cloning methods, as the addition, modification, and deletion of values and dots
above suggests. Skill knowledge is also amenable to cloning, as suggested in the Burton
MI In modeling student skills, in addition to representing how accurately the student
knows the individual steps, the order of execution and the perceived priority of steps or
rules is also, significant.

Conceptual know.dedge consists of referents to human knowledge constructs and as
such can't be modified computationally. However, as suggested above, links emcee concepts
and misconceptions can indicate whether they are known to be generalizations,
specialiutioas, etc., of each other.

The expert knowledge in the tutor is fixed (during a tutoring session), while the
student model is constantly updated. The uncertainty involved in modeling the student puts
strong demands an KR, and may require truth maintenance or endorsement information
[Cohen NIS

Finally, it may be desirable to include student backvo.md information, such as
learning styles and preferences, tutoring session history, and personal and academic
information.

1. Ng _for Tutors for Qualitative vs. OrAnthafirrakiging

The previous section has provided some termmology with which to discuss KR
systems for tutors that focus on qualitative .ad quantitative reasoning. In this section, we
present designs for either the qualitative or quantitlative physics tutor and strongly
distinguish the two inorder to clarify our position. In actuality, the distinction between
qualitative and quantitative reasoning is not always clear and, as mentioned above, the ideal
tutors will have abilities in both areas.

The dair or our quantitative tutor will enable it to be an expert problem solver
and its KR will focus on factual and skill knowledge. The design for our qualitative)
physics tutor will not t,:i able to produce an expert probleni solver and its KR will
emphasize conceptual as well as pedagogic knowledge.

4LKR for a QualltattytakydeMilot

Qualitative understanding of a complex domain is essential to the process of learning.
However, it is very difficult io build an expert qualitative problem solver. Dakar &
Brown [191:10], and Forbes [1982], and others have researched modeling qualitative processes
(and "mental models") and have looked in i. il at bow to answer qualitative questions
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about such objects as car engines, electrical circuits, projectile motion, and P. -aid circuits.
They are interested is questioes such as "How does it work," If I increase this what will
happen to that," "What causes this part to function," and "What will happen if I take this
part out?." This work looks promising, but it is still in its formative stages. As their
research progresses, we may manually be able to incorporate expert qralitative problem
solvers in physics tutors. Our design for It qualitative physics tutor does not result in an
expert system. In Figure 5 4 e provide example frames using our proposed qualitative-KR
structure. We store pre-caladated solutions a d text explanations, and focus on the
pedagogic knowledge needed tc: 1) convey the concepts to be taught, and 2) recognize and
respond appropriately to proems xptions and misconceptions.

The qualitative-KR scheme we present here comes from the cam based tutoring
k CBI) paradigm which we are developing. CBT is an example based Socratic tutoring style
that emphasizes qualitative and analogical reasoning and appears effective for tutoring
subjects where student's proem cepdo Is play a large role. A CM- order case based tutor
will run without language recognition, language generation, sophisticated discourse
knowledge, example generation, sophisticated student modeling, or en expert problem solver.
Therefore much of the informs ion In the qualitadve-Ka is in the form of canned tat and
pro-defined pointers. More advanced systems need to have domain inferendng and
communication knowledge which will enable the tutor to do some of these things
intelligently.

CBT focuses on the use of example situations in tutoring. The types of objects in
the qualitative-KR system ay-, Situationsock-rds (situation relationships), Concepts, and
Misconceptions. Situations criP r.i descriptions of the example situations, questions and
answers about these situations, and information but the 'hued= relevant to using them
in tutoring, such as prerequisite concepts, key assumptions, and level If difficulty.

The Sit -refs describe how the situatio le in the qualitsdveKR we related
pedagogicaly. Examples are extreme ea k, simple case, analogous ass;. The Sic -refs are used
by (yet to be specified) tutoring rules in deciding what situation to present next.

Concepts and Misconceptions are objects that form put of the student model. A
student's answer to a question may increase the evidence that a student has or does not
have a certain concept or misconception. Concepts and hfisconcepdons merely refer to
hypothetical constructs in the minds of students or experts, they do not explicitly describe
these constructs. It may also be possible to have objects called Concept-rel; which relate
concepts and misconceptions according to relationships such as prerequisite, generalization,
specialization, over-generalization, etc. [Goldstein 19821 It is not dear bow this type of
knowledge should be used though.

Pedagogic knowledge et the curriculum level could be included to structure the
presentation of material. The tutor could follow this curriculum, deviating from it when
remedial or explanatory action is needed (which should be quite often), or when the
student interrupts the tutor with, for example, a request for a new example. The following
object types are possibilities:

Topics - Define the local goals of the tutor by organizing the concepts to be addressed
with key example situations. Topics also have information about prerequisite concepts and
topics, pre-tests, summary and overviews, and post-testing.

Curricula - A partially ordered set of topics.
12
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(situ ation-1 vertical-stone-throw

(Ice) cone (force-existence 1-dim-projectile-motion))

(desorption "a pawn throws a stone straight up in the air, and it eventually lands next to them")

(des Ailed-description "a atone is thrown almost straight up. It reaches its peak
and then comes back down landing next to the thrower. We assume there is

no effect from air friction.")

(assumptions ("no air friction"))

(question-1 "what are the forces on the stone when it is half way up ?"

(aqianation nu downward force of gravity is the only force on the stone while it is airborne. 1

(hint-1 "remember that a force is any kind of a push or a pull")

(correct- answer 01)
(answers

(al "there is only the constant force of gravity acting down'
(miscon nil) (concept 3))

(a2 "there is only the downward force of gravity which is always increasing"
(miscon 16) (concept 3))

(a3 "there is the downward farce of gravity and the upward force of the throw
which is constant"

(miscon 1) (concept m1))
(a4 "there is the downward force of gravity and the upward farce of the throw

which is decreasing."
(miscon (1 2)) (concept nil)))

(mis:onception-1 "objects carry an impetus force")

(misxmception-2 "impetus force dies out with time")

(con:ept-3 "objects don't carry an impetus force")

(sit-t el-1

(sit-rel-2

(sit -rel-3

(simple case (vertical-stone-throw stone-drop))
(e.tpl "only gravity is acting in both cues"))

(extreme-case (verticiettone-throw throw-to-moon))
(expl "if there were nu other forces on the stone, it would always come

back because there is always some force of gravity on it. However,
other forces, like the moon's gravity, could change its trajectory

(comparison (vertical-stone-throw rocket-ship-liftoff))
(expl "a rocket ship liftoff is different because the engines

provide constant force on the rocket") )

Figure 5: Example Qualltadve Knowledge for the Stone Throw Situation.

13
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Our goal is to design a quantitative-KR structure that will be general and powerful
enoilh to support (or upgrade with) the inferences made by tutors and expert problem
solvers (within tutors) for many domains. The structure we suggest may be an over-kill for
any particular tutoring domain and it remains to be seen if the ea-tra effort is worth
effort of trying to achieve uniformity across many tutors.

The quantitative -KR system we propose is Wei on using a frame-like shell with
nxninal functionality including inheritance, defaults, and attached procedures. In addition,
we keep within the spirit of KI,ONE [Bradman & Schmolze 191S1 knowledge
representation framework, and define a system that limits the set of possible relationships or
slot names for objects. Doing so provides pater precision in representation and increases
the power of the inference rules and operators which act on the knowledge. According tothis model, we limit the slot names of objects to thing like is-a, subparts, properties
(1 -place predicates), relationships (n- place predicates), and examples.

For example, in the non-ideal case, if we want to represent that a table Is blue, wecould have a slot for Color and fill it with 'blue" for this particular table. A more
desirable representation would be to have an object called Color which Is of type
Object-property, and have an instantiation of Color, called Color-1S, which represents the
property of having a blue color. We then have a dot in the table object for
object-properties. One of the items in this slot would be Color-IS. This extra level of
refinement enables us to reason about colornem in general through *Ns Color object, and to
reason about blueness in general through the Color-1S object. Other physical objects that
have a blue color would have this same object, Color-1S, in their object-properties slot.

4.2.1 Representing Facts

Our ideas for a quantitative-KR structure for a physics tutor were inspired in part
by the works of Forbus [1982], delUeer & Brown [19001, and Novak [19771 We represent
separately noun-like objects, such as physical objects and maw, from relationship and
property objects, so that an expert system can reason about properties and relationships.
Figure 6 define classes of objects for our proposed quantitative knowledge base and Figure
7 provides example frames from the stone throw problem.

422 Representing Skills

The tutor needs procedural knowledge (skill knowledge) about how to solve problems
in the domain. This knowledge can range from simple reasoning about specific domain
algorithms or equation solving, to more complex heuristic problem .solying knowledge or
spatial/geometric reasoning, to very complex reasoning about "LOM111011 sense" knowledge.
Common sense knowledge, such as If A is on top of B then A touches B" and "if A is
red then A can not be blue," is in general, difficult to model with completeness. However,
some common sense knowledge can be easily incorporated into frame representations. For
example, all baseballs are kinds of balls (inheritance), all balls are round (dot values), carts

14
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auckekji (physical objects) represent the physical objects in the problem such as
can, people, bath, planets.

Cult& (canonical objects) represent abstractions of physical objects that have
significance in physics problem solving. All Phys-objs are of some type of Can-obj.
Examples of can-objs are: cart, ball, inclined plane, pivot-point, point-mass, wall. For
example, cars, trains, wagons, etc. are all treated the same for the purpose of
physics problem solving, so they are all or the save tie, i.e. "cart."

Mingo (object properties) represent physical and canonical objects defined
according to their propegies by pointing to obj-props. The objprops themselves are
separate objects which contzln information about things which must be true of any
object having that property. Can-objs have phydcs-relevant properties such as weight,
length, surface-smoothness. Phys-objs have non-relevant properties such as color, and
owner.

QUifill (abject relationships) reprrsent specific relationships between objects.

Examples P/C on touches, distance-between, attached-to.

Esommikits (formula relationships) represent relationships between parameters of
objects. An example is "Newton's-second-law," Fes. One could specify that the
Newtons-second-law relationship holds between force-on(ball), mass-of(ball), and
acceleration-of(ball). Here the force, mass, and acceleration are Obj- props of the
Can-obj ball.

em (pincess/states) represent physical processes or states such as rolling, sliding,
evaporation, oscillation, collision, and electric current. P/S's have slots for "actors"
which are filled by Phys-objs. P/S's specify quasi-stable relationships between objects
by indicating what Obj-rels hold between the objects in that P/S, and what
Formulageb hold for the parameters of the objects. The P/S can also specify
functioe sl, causal, and temporal relationships between objects. The one boom is a
P/S since it has a given set of relationships between a given set of objects (even

though the parameters can change their values)

aisions are physical situations composed of one or a number of P/S's which share
common actors and have an overall temporal or causal connection. Situations an
included in our scheme so that we can represent entire stories or a sequence of
P/S's. For example, a block slides down an inclined plane, tads, and lands on a
sponge. The sliding, falling, and collision are separate P/S's.. Heating, evaporation,
convection, cooling, and then precipitation of water is another example of a
Situation °apprised of several P/S's. The individual P/S'e share some of their
objects (won) in these Situations. For most of the examples we are concerned with,
the Situation consists of only one P/S, so for most of this paper the words
Situation and P/S can be used interchangeably, i.e. a reference to the crane-boom
situation is equivalent (unless otherwise noted) to the crane boom P/S.

Figure 6: Representing Facts in a Quantitative Knowledge base.
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(phys-obistorie-1
(canonical-type point-mass)
(properties
(man
(value SO) (units kg))

(material rock)
(calor gray)))

(phr441xxson-1
(canonical-type cannon)

(Pro Perrin
(name "a person" (angle 90)
(humanp t)))

(can-obj-point-man
(Pro Pardo
(man nil))) ; nd for unknown

(can-obi-cannon
(properties
(angle nil) (max -force nil)))

(formula-distance
(parameters (a a t vo xo))
(relationship = 5 ° a + vo t + le))

(forriula-velocity
(parameters (v a t vo))
(relationship `, = a t + vo))

(formula-newtons-3rd
(parameters (f m a))
(relationship rn a"))

(formula-gravity
(parameters (ml m2 g r f))
(relationship g ml / reel)

(p/s-vertical-projectile
(name nil)
(actors (cannon point - mass))
(parameters
(height nil) (vel (init-vel nil)
(man get-prop point -macs man) (cannon-angle get-prop cannon angle)
(cannon-height ml) (a (value -5) (units m-per ecMu))
(final -vet nil) (apogee-height nil))

(relationships
(formula-distance (height a t init-vel cannon-height)
formula-velocity (vel a t init-vel)
(setq apogee-height ((-vo vol(2%) + m ))))

Figure 7: bumph (Pawatitative Knowledge Representation for Coe Stone Throw Situation.
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usually have four wheels (defaults), and the center of a board is half its length from one

end (attached procedures).

An ideal computer tutor needs procedures and/or rules that enable it to make

sophisticated inferences in order to 1) understand, 2) solve, and 3) teach domain knowledge

and domain problems. As mentioned above, we are not concerned with tutoring rules (item

3) here (except to note that pedagogic knowledge about the expert knowledge will assist in

student modeling and will help dynamically determine the foci and goals of the tutoring

session). We will also assume that the tutor understands the muting of the problems that

it generates of is given (item 2; i.e. it does not have to interpret the meaning of an

arbitrary domain problem given to it by the user). So we will limit our discussion of

problem solving knowledge to those skills needed to solved the problem once it is

understood.

Several researchers have looked at the procedural nature of skills as represented in

tutors [Burton 1982, Goldstein 1982, and Anderson 19851 In such systems, student behavior

is usually modeled as if-then rules (productions), and the student's skill knowledge is

interpreted as a set of rules that overlap the expert rules. Some student actions are

interpreted as correct expert rules, and others as erroneous rules. The wrong rules can be

&vied= of expert rules or extraneous rules. The tutor follows the student's behavior,

interpreting it in terms of recognizable correct and "buggy" rules, and then takes

appropriate action. As Anderson points out, problem solving activity is goal-driven. The

productions in his tutoring systems reflect this by indicating how goals are broken into

subgoals as the problem's "solution space" Is searched. He stresses the importance of

communicating the goal structure of the problem solving to the student. (See also Heller &

Reif 1984 on goal structured physics tutoring).

As an example, the goal of solving a crane boom problem could be broken up into

these sabres (or sub-procedures, or sub - skills)

1. Recognize the important objects and their parts (booms, cables, etc.).

2. Recognize the relevant physical relationships between objects ((-nnnections,

supports, etc.).

3. Recognize and label the important parameters of the problem (forces, lengths,

etc.).

4. Decide on a strategy. For example use the fact that the sum of the forces and
torques on each object is zero in c static situation.

5. Recall the relevant formulas.

6. Instantiate the formulas for this problem.

7. Solve the equations.

17



17
8. Interpret the answer in terms of the original problem situation.

These subgoals would in turn be broken up into sequences (or hierarchies) of goals or
specific actions. There are many design issues about how to incorporate production rules
for problem solving in tutoring systems, including making a choice of grain size for the
rules, deciding on conflict resolutions strategies, and recognizing student plans and goals.

The quantitativeKR for an expert tutor may need procedural expertise in
measurement (measurement error, units conversion, rate of change, etc.),
geometry /trigonometry (spatial reasoning), temporal reasoning, and causal reasoning. More
sophisticated systems may need to reason about hypothetical situations, possibility, and the
probability, consistency, relevano:, and redundancy of information.

4.23 Representing Pedagogic Knowledge in a Quantitative Tutor

The KR for design of a quantitative tutor contains only pedagogic information, such
as concepts and examples. There are some types of pedagogic information which apply only
to the qualitative tutor. For example, we may want to store pedagogic information about
the importance and salience of object's properties. The non-relevant (to physics) Obj-props
mentioned above are pedagogic knowledge. The rules or procedures that comprise skill or
heuristic knowledge should be annotated according to difficulty level and should be
annotated so that they can "e (plain themselves" (as in the Guidon tutor for the Mydn
expert system).

Our suggestions have emphasized the use of expert knowledge for quantitative tutors
and pedagogic knowledge for qualitative tutors because this diviicn corresponds to two
realizable types of tutors. As mentioned above, tutors of either type could incorporate both
expert and pedagogic knowledge, and ideal tutoring systems should reason both qualitatively
and quantitatively.

5. randszien

We have designed a knowledge representation that allows a variety of researchers to
tease apart knowledge needed to teach a science domain. We have designed a structure and
vocabulary to facilitate teachers and knowledge engineers in designing data bases for tutors.
Though we still need to test the efficacy of our design, the intent was to amke the design
1) general enough to be used for multiple science domains and several target behaviors and
2) powerful enough to stipport (or upgrade to) sophisticated inferencing in expert problem
solving and student diagnosis.

We introduced two independent categorizations of knowledge: facts, skills, and
concepts, and expert/pedagogic knowledge. These orthogonal categories have been useful for
discussing the function of pieces of knowledge, the form in which such knowledge will be
implemented in an Al system, and the target behaviors desired in the students.
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